正弦定理的推导

三角形的面积公式为S=(底×高)/2,如上图S=(BC×AD)/2,而BC=a, AD=bsin(C),所以S=(absinC)/2。
同理可得

整理得到

等于2R是如何得到的呢?
2R是三角形ABC外接圆的直径,结合下图进行简要证明。

证明: 圆C1是△ABC的外接圆,BD为直径, ∴∠BCD=90°。
Rt△BCD中, a=BD×sin∠BDC,
根据同弧所对圆周角相等得∠A=∠BDC, BD=2R,
可得 a=2RsinA,即

余弦定理的推导
余弦定理可通过向量运算的三角形法则及向量内积的定义和性质得到。
如图,△ABC的三个角为∠A、∠B、∠C, 三边分别为a、b、c

向量运算的三角形法则(加法): 首尾相连首指尾。

即

亦即

两边平方得

根据向量内积定义及性质得

即

同理可得

正余弦定理是解三角形的基础,了解其推导过程,可将对向量和三角的理解提升到新高度。